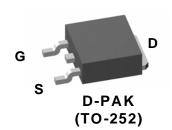
## FAIRCHILD SEMICONDUCTOR

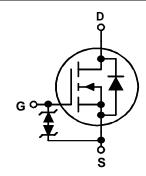
September 2007

# **FDD8453LZ** N-Channel PowerTrench<sup>®</sup> MOSFET **40V, 50A, 6.7m**Ω

#### Features

- Max  $r_{DS(on)} = 6.7 m\Omega$  at  $V_{GS} = 10V$ ,  $I_D = 15A$
- Max  $r_{DS(on)} = 8.7 m\Omega$  at  $V_{GS} = 4.5 V$ ,  $I_D = 13 A$
- HBM ESD protection level >7kV typical (Note 4)
- RoHS Compliant





## **General Description**

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench® process that has been especially tailored to minimize the on-state resistance and switching loss. G-S zener has been added to enhance ESD voltage level.

## Applications

- Inverter
- Synchronous Rectifier



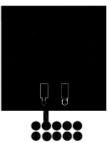


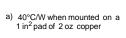
## **MOSFET Maximum Ratings** $T_{C} = 25^{\circ}C$ unless otherwise noted

| Symbol          | Parameter                                    |                       |           | Ratings     | Units |  |
|-----------------|----------------------------------------------|-----------------------|-----------|-------------|-------|--|
| V <sub>DS</sub> | Drain to Source Voltage                      |                       |           | 40          | V     |  |
| V <sub>GS</sub> | Gate to Source Voltage                       |                       |           | ±20         | V     |  |
| ID              | Drain Current -Continuous (Package limited)  | T <sub>C</sub> = 25°C |           | 50          | _     |  |
|                 | -Continuous (Silicon limited)                | T <sub>C</sub> = 25°C |           | 75          | ^     |  |
|                 | -Continuous                                  | T <sub>A</sub> = 25°C | (Note 1a) | 16.4        | A     |  |
|                 | -Pulsed                                      |                       |           | 100         |       |  |
| E <sub>AS</sub> | Single Pulse Avalanche Energy                |                       | (Note 3)  | 253         | mJ    |  |
| P <sub>D</sub>  | Power Dissipation                            | T <sub>C</sub> = 25°C |           | 65          | 14/   |  |
|                 | Power Dissipation                            | T <sub>A</sub> = 25°C | (Note 1a) | 3.1         | W     |  |
| TJ, TSTG        | Operating and Storage Junction Temperature R | ange                  |           | -55 to +150 | °C    |  |

## **Thermal Characteristics**

| $R_{	ext{	heta}JC}$ | Thermal Resistance, Junction to Case    |           | 1.9 | °C/W |
|---------------------|-----------------------------------------|-----------|-----|------|
| $R_{\thetaJA}$      | Thermal Resistance, Junction to Ambient | (Note 1a) | 40  | C/vv |


### **Package Marking and Ordering Information**

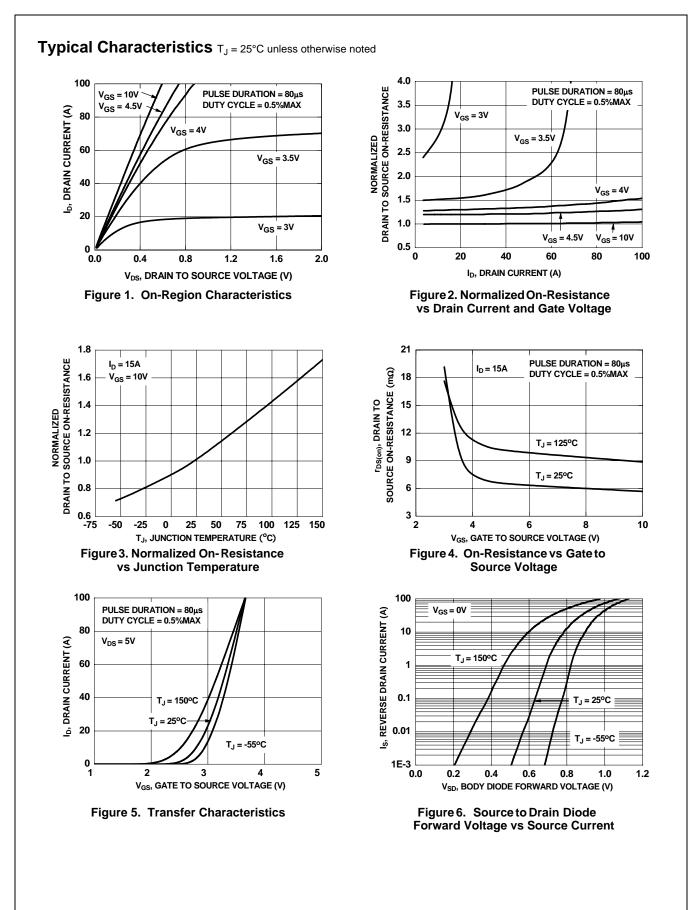

| Device Marking | Device    | Package        | Reel Size | Tape Width | Quantity   |
|----------------|-----------|----------------|-----------|------------|------------|
| FDD8453LZ      | FDD8453LZ | D-PAK (TO-252) | 13"       | 12mm       | 2500 units |

| Symbol                                                                                               | Parameter                                                                                                                                                                       | Test Conditions                                                                                                                                                         | Min | Тур                                  | Max                         | Units                      |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------|-----------------------------|----------------------------|--|
| Off Chara                                                                                            | octeristics                                                                                                                                                                     |                                                                                                                                                                         |     |                                      |                             |                            |  |
| BV <sub>DSS</sub>                                                                                    | Drain to Source Breakdown Voltage                                                                                                                                               | $I_{D} = 250 \mu A, V_{GS} = 0 V$                                                                                                                                       | 40  |                                      |                             | V                          |  |
| $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$                                                               | Breakdown Voltage Temperature<br>Coefficient                                                                                                                                    | $I_D = 250 \mu A$ , referenced to 25°C                                                                                                                                  |     | 36                                   |                             | mV/°0                      |  |
| IDSS                                                                                                 | Zero Gate Voltage Drain Current                                                                                                                                                 | $V_{DS} = 32V, V_{GS} = 0V$                                                                                                                                             |     |                                      | 1                           | μA                         |  |
| I <sub>GSS</sub>                                                                                     | Gate to Source Leakage Current                                                                                                                                                  | $V_{GS} = \pm 20V, V_{DS} = 0V$                                                                                                                                         |     |                                      | ±10                         | μA                         |  |
|                                                                                                      | cteristics                                                                                                                                                                      |                                                                                                                                                                         | *   |                                      |                             |                            |  |
| V <sub>GS(th)</sub>                                                                                  | Gate to Source Threshold Voltage                                                                                                                                                | $V_{GS} = V_{DS}, I_{D} = 250 \mu A$                                                                                                                                    | 1.0 | 1.8                                  | 3.0                         | V                          |  |
| $\frac{\Delta V_{GS(th)}}{\Delta T_{.l}}$                                                            | Gate to Source Threshold Voltage<br>Temperature Coefficient                                                                                                                     | $I_D = 250 \mu A$ , referenced to 25°C                                                                                                                                  | 1.0 | -6.0                                 | 5.0                         | mV/°C                      |  |
| r <sub>DS(on)</sub> Static Drain to Source On Resistance                                             |                                                                                                                                                                                 | V <sub>GS</sub> = 10V, I <sub>D</sub> = 15A                                                                                                                             |     | 5.8                                  | 6.7                         |                            |  |
|                                                                                                      |                                                                                                                                                                                 | $V_{GS} = 4.5V, I_D = 13A$                                                                                                                                              |     | 6.8                                  | 8.7                         | -                          |  |
|                                                                                                      | Static Drain to Source On Resistance                                                                                                                                            | $V_{GS} = 10V, I_D = 15A,$<br>T <sub>1</sub> = 125°C                                                                                                                    |     | 9.1                                  | 10.6                        | -mΩ                        |  |
| 9 <sub>FS</sub>                                                                                      | Forward Transconductance                                                                                                                                                        | V <sub>DS</sub> = 5V, I <sub>D</sub> = 15A                                                                                                                              |     | 77                                   |                             | S                          |  |
| C <sub>iss</sub>                                                                                     | Characteristics Input Capacitance Output Capacitance                                                                                                                            | V <sub>DS</sub> = 20V, V <sub>GS</sub> = 0V,                                                                                                                            |     | 2640                                 | 3515                        | pF                         |  |
| C <sub>oss</sub>                                                                                     | Output Capacitance                                                                                                                                                              |                                                                                                                                                                         |     | 320                                  | 425                         | pF                         |  |
| C <sub>rss</sub>                                                                                     | Reverse Transfer Capacitance                                                                                                                                                    | f = 1MHz                                                                                                                                                                |     | 190                                  | 285                         | pF                         |  |
| R <sub>g</sub>                                                                                       | Gate Resistance                                                                                                                                                                 | f = 1MHz                                                                                                                                                                |     | 2.3                                  |                             | Ω                          |  |
| Switching                                                                                            | g Characteristics                                                                                                                                                               |                                                                                                                                                                         | 1   |                                      |                             |                            |  |
|                                                                                                      | Turn-On Delay Time                                                                                                                                                              |                                                                                                                                                                         |     | 11                                   | 19                          | ns                         |  |
| t <sub>d(on)</sub>                                                                                   |                                                                                                                                                                                 |                                                                                                                                                                         |     |                                      |                             |                            |  |
| - ( - )                                                                                              | Rise Time                                                                                                                                                                       | $V_{DD} = 20V, I_D = 15A,$                                                                                                                                              |     | 6                                    | 12                          | ns                         |  |
| t <sub>d(on)</sub><br>t <sub>r</sub><br>t <sub>d(off)</sub>                                          | ,                                                                                                                                                                               | $V_{DD} = 20V, I_D = 15A,$<br>$V_{GS} = 10V, R_{GEN} = 6\Omega$                                                                                                         |     | 6<br>37                              | 12<br>58                    | ns<br>ns                   |  |
| t <sub>r</sub>                                                                                       | Rise Time                                                                                                                                                                       |                                                                                                                                                                         |     |                                      |                             |                            |  |
| t <sub>r</sub><br>t <sub>d(off)</sub>                                                                | Rise Time<br>Turn-Off Delay Time                                                                                                                                                | $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$                                                                                                         |     | 37                                   | 58                          | ns                         |  |
| t <sub>r</sub><br>t <sub>d(off)</sub><br>t <sub>f</sub><br>Q <sub>g</sub>                            | Rise Time<br>Turn-Off Delay Time<br>Fall Time                                                                                                                                   | $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{DD} = 20V,$                                                                                         |     | 37<br>5                              | 58<br>10                    | ns<br>ns                   |  |
| $t_r$<br>$t_{d(off)}$<br>$t_f$<br>$Q_g$<br>$Q_g$                                                     | Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge                                                                                                              | $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$                                                                                                         |     | 37<br>5<br>46                        | 58<br>10<br>64              | ns<br>ns<br>nC             |  |
| $t_r$<br>$t_{d(off)}$<br>$t_f$<br>$Q_g$<br>$Q_g$                                                     | Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge         Total Gate Charge                                                                     | $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{DD} = 20V,$                                                                                         |     | 37<br>5<br>46<br>24                  | 58<br>10<br>64              | ns<br>ns<br>nC<br>nC       |  |
| $\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_g \\ Q_{gs} \\ Q_{ggd} \end{array}$           | Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge         Total Gate Charge         Gate to Source Charge                                       | $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{DD} = 20V,$                                                                                         |     | 37<br>5<br>46<br>24<br>7             | 58<br>10<br>64              | ns<br>ns<br>nC<br>nC<br>nC |  |
| $\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_g \\ Q_{gs} \\ Q_{ggd} \end{array}$           | Rise Time         Turn-Off Delay Time         Fall Time         Total Gate Charge         Total Gate Charge         Gate to Source Charge         Gate to Drain "Miller" Charge | $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 20V,$ $I_{D} = 15A$ $V_{GS} = 0V, I_{S} = 2.0A \text{ (Note 2)}$ |     | 37<br>5<br>46<br>24<br>7<br>8<br>0.7 | 58<br>10<br>64<br>33<br>1.2 | ns<br>ns<br>nC<br>nC<br>nC |  |
| $\begin{array}{c} t_{r} \\ t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \end{array}$ | Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge<br>Total Gate Charge<br>Gate to Source Charge<br>Gate to Drain "Miller" Charge<br>urce Diode Characteristics | $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 20V,$ $I_{D} = 15A$                                              |     | 37<br>5<br>46<br>24<br>7<br>8        | 58<br>10<br>64<br>33        | ns<br>nS<br>nC<br>nC<br>nC |  |

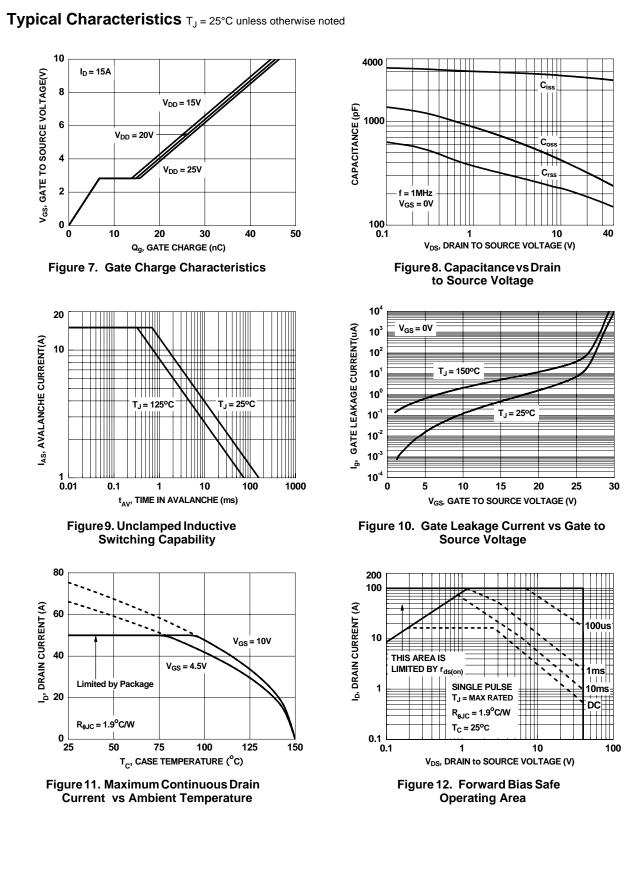
Notes:

1:  $R_{0JA}$  is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.  $R_{0JA}$  is guaranteed by design while  $R_{0JA}$  is determined by the user's board design.

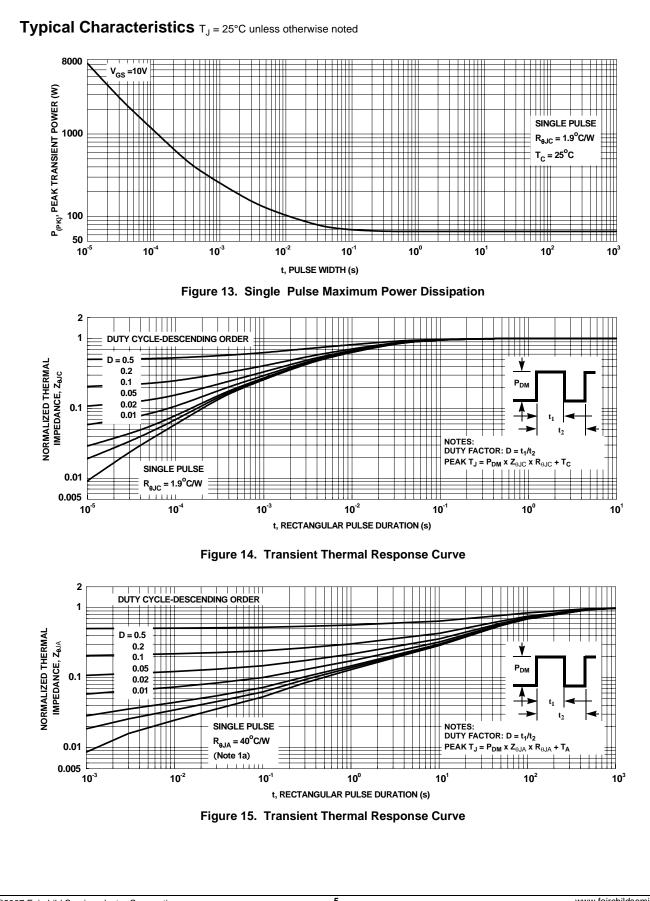








Q

b) 96°C/W when mounted on a minimum pad.


Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.</li>
 Starting T<sub>J</sub> = 25°C, L = 3mH, I<sub>AS</sub> = 13A, V<sub>DD</sub> = 40V, V<sub>GS</sub> = 10V.
 The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.



©2007 Fairchild Semiconductor Corporation FDD8453LZ Rev.C



FDD8453LZ N-Channel PowerTrench<sup>®</sup> MOSFET



FDD8453LZ N-Channel PowerTrench<sup>®</sup> MOSFET





SEMICONDUCTOR

#### TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx <sup>®</sup><br>Build it Now <sup>™</sup><br>CorePLUS <sup>™</sup><br><i>CROSSVOLT</i> <sup>™</sup><br>CTL <sup>™</sup><br>Current Transfer Logic <sup>™</sup><br>EcoSPARK <sup>®</sup><br>Fairchild <sup>®</sup><br>Fairchild <sup>®</sup><br>Fairchild Semiconductor <sup>®</sup><br>FACT Quiet Series <sup>™</sup><br>FACT <sup>®</sup><br>FAST <sup>®</sup><br>FastvCore <sup>™</sup><br>FPS <sup>™</sup><br>FRFET <sup>®</sup><br>Global Power Resource <sup>SM</sup> | Green FPS <sup>™</sup><br>Green FPS <sup>™</sup> e-Series <sup>™</sup><br>GTO <sup>™</sup><br><i>i</i> -Lo <sup>™</sup><br>IntelliMAX <sup>™</sup><br>ISOPLANAR <sup>™</sup><br>MgaBuck <sup>™</sup><br>MiCROCOUPLER <sup>™</sup><br>MiCROCOUPLER <sup>™</sup><br>MicroFET <sup>™</sup><br>MicroFET <sup>™</sup><br>MicroPak <sup>™</sup><br>MillerDrive <sup>™</sup><br>Motion-SPM <sup>™</sup><br>OPTOLOGIC <sup>®</sup><br>OPTOPLANAR <sup>®</sup><br><sup>®</sup><br>PDP-SPM <sup>™</sup><br>Power220 <sup>®</sup> | Power247 <sup>®</sup><br>POWEREDGE <sup>®</sup><br>Power-SPM™<br>PowerTrench <sup>®</sup><br>Programmable Active Droop™<br>QFET <sup>®</sup><br>QS™<br>QT Optoelectronics™<br>Quiet Series™<br>RapidConfigure™<br>SMART START™<br>SPM <sup>®</sup><br>STEALTH™<br>SuperFET™<br>SuperSOT™-3<br>SuperSOT™-6 | SuperSOT™-8<br>SyncFET™<br>The Power Franchise <sup>®</sup><br><b>P</b><br>franchise<br>TinyBoost™<br>TinyBoost™<br>TinyLogic <sup>®</sup><br>TINYOPTO™<br>TinyPOWer™<br>TinyPWM™<br>TinyWire™<br>µSerDes™<br>UHC <sup>®</sup><br>UniFET™<br>VCX™ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| Datasheet Identification | Product Status         | Definition                                                                                                                                                                                                       |
|--------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                               |
| Preliminary              | First Production       | This datasheet contains preliminary data; supplementary data will be pub-<br>lished at a later date. Fairchild Semiconductor reserves the right to make<br>changes at any time without notice to improve design. |
| No Identification Needed | Full Production        | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.                                                           |
| Obsolete                 | Not In Production      | This datasheet contains specifications on a product that has been discontin-<br>ued by Fairchild Semiconductor. The datasheet is printed for reference infor-<br>mation only.                                    |